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1. Introduction

Recently Witten [1] argued that pure three-dimensional quantum gravity with a negative

cosmological constant in AdS3 should be dual to a CFT on the boundary of central charge

(cL, cR) = (24k, 24k), where k is a positive integer. This CFT factorizes into a holomorphic

CFT and an anti-holomorphic CFT, whose lowest dimensional primary field has dimension

k + 1. Such CFTs are called extremal (ECFT) [2]. A k = 1 ECFT was constructed by

Frenkel, Lepowsky and Meurman [3] as a Z2 orbifold of free bosons on the Leech lattice,

giving rise to the monster module. It is not yet known whether the k > 1 ECFTs exist,

and it is clearly of interest to either construct them or to disprove their existence.

It was shown in [1] that the partition function for a k = 2 ECFT, if exists, can

be constructed on any genus g hyperelliptic Riemann surface, using the (2g + 2)-point

function of twist operators in the 2-fold symmetric product of the k = 2 ECFT. The

partition function constructed in this way is consistent in the sense that, in the limit where

the Riemann surface degenerates, the partition function reduces to lower genus correlation

functions in suitable ways.

For example, the genus one partition function is related to the four-point function of

the twist field E . The latter can be determined from the E(z)E(0) OPE, which essentially

encodes the operator spectrum of the CFT. The genus two partition function, on the other

hand, is related to six-point function of twist fields, and encodes information about the

three point function of primaries. It is an Sp(4,Z) modular form of weight 2k, and is in

fact χ−k
10 times an entire holomorphic Siegel modular form of weight 12k [1]. Here χ10

stands for the weight 10 Igusa cusp form. The k = 1 genus two partition function has

been computed in [4]. For k = 1, 2, 3, there are a basis of 3, 8 and 17 linearly independent

– 1 –



J
H
E
P
0
8
(
2
0
0
7
)
0
2
9

entire Sp(4,Z) modular forms of weight 12, 24 and 36, respectively. One can determine

the coefficients of these basis modular forms by considering the limits where the genus two

Riemann surface degenerates. One limit (“pairwise degeneration”) is when a handle of the

Riemann surface is pinched, corresponding to a pair of the twist fields collide. Another

limit (“separating degeneration”) is when the Riemann surface degenerates into two genus

one surfaces touching at a point (or conformally equivalently, connected by a thin tube).

In practice one can simplify things by considering a limit where all three pairs of twist

fields degenerate, so that the six-point function can be replaced by the three point function

of operators appearing in the singular terms of the E(z)E(0) OPE. The latter is of the form

E(z)E(0) =
1

z3k
(1 + Virasoro descendants) +

1

zk−2

∑

i

O+
k+1,iO

−
k+1,i + · · · (1.1)

where O±
k+1,i are primaries of dimension k + 1 in the two copies of the ECFT. Without

using any information of Ok+1,i, one can determine certain singular parts of the six-point

function of E . This turns out to be sufficient to fix (in fact, “over”-determining) the k = 1

and k = 2 genus two partition functions completely, while for k = 3 one can fix all but 3

linear combinations of the 17 coefficients of the Siegel modular forms.

On the other hand, at the separating degeneration, the leading divergence of the genus

two partition function factorizes as the product of the partition functions of the two genus

one Riemann surfaces. For k = 1, 2, this is indeed the case, as expected from [1]. It also

provides a highly nontrivial check for our expression for the k = 2 genus two partition

function. For k = 3, the factorization at the separating degeneration fixes the remaining

3 coefficients of the modular forms, and hence the genus two partition function. Once

again, it in fact “over”-determines the genus two partition function, hence the consistent

factorization of our expression provides nontrivial evidences for the existence of the k = 3

ECFT.

A slightly different approach, suggested in [1] as well, is to start by constructing the

genus two partition function by sewing two genus one Riemann surfaces. Combining the

knowledge of certain torus one-point functions and the Sp(4,Z) modular invariance, we

will show that it is in fact possible (at least in principle) to fix the genus two partition

functions completely (and uniquely), for ECFTs with k ≤ 10, assuming their existence.

The explicit solutions, as well as consistency checks at all degenerations of the genus two

Riemann surface, will be left to future work.

Section 2 describes some useful formulae for the OPE of twist fields and Siegel modular

forms. In section 3, we shall examine the partition function of ECFTs with k = 1, 2, 3. In

section 4, we discuss the factorization at the separating degeneration to higher orders, and

a general sewing construction of the genus two partition function.

2. Generalities

The 1-loop partition function of an extremal CFT M can be related to the 4-point function
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of twistor operators in the symmetric product CFT Sym2(M) [5 – 8, 1],

Z = 28k





∏

1≤i<j≤4

eij





k

〈E(e1)E(e2)E(e3)E(e4)〉. (2.1)

where E is normalized such that 〈E(x)E(0)〉 = x−3k. The ei’s are related to the modulus τ

of the torus as follows. If we set e4 = ∞, e1 + e2 + e3 = 0 by a conformal transformation,

then the Jacobi theta functions of τ are related by

e12 = θ3(τ)4, e32 = θ2(τ)4, e13 = θ4(τ)4. (2.2)

For general ei’s, we can write the j-function of τ as

j(τ(e1, e2, e3, e4)) = 25 (θ8
2 + θ8

3 + θ8
4)

3

θ8
2θ

8
3θ

8
4

= 25 (e2
12e

2
34 + e2

13e
2
24 + e2

14e
2
23)

3

(
∏

i<j eij)2
(2.3)

where eij ≡ ei − ej .

The OPE of the twist fields of the form

E(x)E(0) ∼
1

x3k
(1 + descendants) +

1

xk−2
O2k+2(0) + · · · (2.4)

where O2k+2 is a primary field of dimension 2k+2 in the untwisted sector of Sym2(M). By

examining the three-point function 〈EEO〉 one can see that O2k+2 is in fact proportional

to
∑

i O
+
k+1,iO

−
k+1,i, where O±

k+1,i are the complete set of dimension k + 1 primaries in the

two copies of the ECFTs.

To determine the Virasoro descendants appearing in (2.4), we shall closely follow the

discussion of [1], but will work to higher orders. Inserting a pair of twist fields E(e), E(−e)

in a correlation function amounts to compute the correlation function on the covering

Riemann surface y2 = (x + e)(x − e). The Virasoro descendants appearing in the r.h.s.

of (2.4) can be determined by requiring that the corresponding state is annihilated by the

difference of the Virasoro generators on the two branches of the covering Riemann surface.

Let u = x + y, v = x − y. The equation defining the double cover of the x-plane branched

at ±e is then uv = e2. The holomorphic vector fields

Vn = 2−nun+1∂u = −2−ne2nv1−n∂v (2.5)

define the Virasoro generators

Q+
n =

∮

S+

VnT =

∮

S+

2−nun+1 dx

du
dxTxx (2.6)

on the upper sheet, and

Q−
n =

∮

S
−

VnT =

∮

S
−

2−ne2nu1−n dx

du
dxTxx (2.7)

on the lower sheet, up to a constant term due to the anomaly in transforming T from

u to x coordinate. The operators Q̂n = Q+
n − Q−

n should annihilate the state appearing
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in the E(e)E(−e) OPE. The constant terms in the Q̂n’s can be determined by requiring

[Q̂n, Q̂m] = (n − m)Q̂n+m. For our purpose, we will need the expressions for Q̂0,1,2,3,4 up

to terms of order O(e8). They are given explicitly by

Q̂0 =

(

L+
0 −

e2

2
L+
−2 −

e4

8
L+
−4 −

e6

16
L+
−6 −

5e8

128
L+
−8

)

−

(

L−
0 −

e2

2
L−
−2 −

e4

8
L−
−4 −

e6

16
L−
−6 −

5e8

128
L−
−8

)

+ · · ·

Q̂1 =

(

L+
1 −

3e2

4
L+
−1 −

e4

16
L+
−3 −

e6

32
L+
−5 −

5e8

256
L+
−7

)

−

(

e2

4
L−
−1 −

e4

16
L−
−3 −

e6

32
L−
−5 −

5e8

256
L−
−7

)

+ · · ·

Q2 =

(

L+
2 − e2L+

0 − 3ke2 +
e4

16
L+
−2 −

e8

256
L+
−6

)

−

(

e4

16
L−
−2 −

e8

256
L−
−6

)

+ · · ·

Q̂3 =

(

L+
3 −

5e2

4
L+

1 +
e4

4
L+
−1 +

e6

64
L+
−3 +

e8

256
L+
−5

)

−

(

e6

64
L−
−3 +

e8

256
L−
−5

)

+ · · ·

Q̂4 =

(

L+
4 −

3e2

2
L+

2 +
e4

2
L+

0 −
3ke4

2
+

e8

256
L+
−4

)

−
e8

256
L−
−4 + · · · (2.8)

where L± are the Virasoro generators in the two copies of the CFT, i.e. on the two sheets.

The state |Ψ〉 of the form (1 + descendants)|0〉 and annihilated by all the Q̂m’s is

|Ψ〉 =

{

1 +
e2

4
L−2 +

e4

32

[

L−4+L2
−2+

1

6k
L+
−2L

−
−2

]

+
e6

128

[

L−2L−4 +
1

6k
L+
−2L

−
−2L−2 +

1

3
L3
−2+

1

24k
L+
−3L

−
−3

]

+
e8

512

[

7

6
L−8+

1

2
(L−2L−6 + L−6L−2) +

1

4
L2
−4

+
1

6
(L2

−2L−4 + L−2L−4L−2 + L−4L
2
−2)

+
1

12
L4
−2+

1

12k
L−4L

+
−2L

−
−2 +

1

12k
L2
−2L

+
−2L

−
−2+

1

24k
L−2L

+
−3L

−
−3

+
1

k(60k + 11)

(

(k +
1

3
)L+

−4L
−
−4+

5

12
(L+

−2)
2(L−

−2)
2 −

1

4
(L+

−4(L
−
−2)

2 + L−
−4(L

+
−2)

2)

)]

+O(e10)

}

|0〉 (2.9)

The corresponding operator is (e = x/2)

Ψx = 1 +
x2

16
T +

x4

210
∂2T +

x4

29
T ∗ T +

x4

3 · 210k
T+T− +

x6

214
T ∗ ∂2T

+
x6

3 · 214k
(T+ ∗ T+T− + T− ∗ T−T+)+

x6

3 · 213
T ∗ (T ∗ T ) +

x6

3 · 216k
∂T+∂T−

+
x8

217

{

7

6 · 6!
∂6T +

1

48
(T ∗ ∂4T + ∂4T ∗ T ) +

1

16
∂2T ∗ ∂2T +

1

12
T ∗ (T ∗ (T ∗ T ))
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+
1

12
(T ∗ (T ∗ ∂2T ) + T ∗ (∂2T ∗ T ) + ∂2T ∗ (T ∗ T ))+

1

24k
∂2T ∗ (T+T−)

+
1

12k
T ∗ (T ∗ (T+T−))+

1

24k
T ∗ (∂T+∂T−)+

1

4k(60k + 11)

[

(k +
1

3
)∂2T+∂2T−

+
5

3
(T+ ∗ T+)(T− ∗ T−) −

1

2
(∂2T+T− ∗ T− + ∂2T−T+ ∗ T+)

]}

+ O(x10) (2.10)

where the notation A ∗ B stands for Resz→0 [A(z)B(0)/z]. Now we can express the OPE

of twist fields as

E(x/2)E(−x/2) ∼
1

x3k
Ψx(0) +

const

xk−2

∑

i

O+
i O

−
i (0) + · · · (2.11)

Let us consider the six-point function 〈E(e1) · · · E(e6)〉. It is related to the genus two

partition function by

Zk,g=2(Ω) = Ak





∏

1≤i<j≤6

(ei − ej)
k



 〈E(e1) · · · E(e6)〉 (2.12)

where the genus two Riemann surface is represented as the hyperelliptic curve

y2 =

6
∏

i=1

(x − ei), (2.13)

and Ak is a constant. Zk,g=2 is an Sp(4,Z) modular form of weight 2k. The six-point

function has singularities that goes like (ei − ej)
−3k. Multiplying it by

∏

i<j(ei − ej)
3k =

χ
3k/2
10 , one obtains an entire holomorphic Sp(4,Z) Siegel modular form of weight 12k.

The ring of such modular forms is generated by the Eisenstein series ψ4, ψ6 (with slightly

different normalization, as defined below) and the cusp forms χ10, χ12. Following [9], one

defines the projective invariants

A =
∑

15 perms

e2
12e

2
34e

2
56,

B =
∑

10 perms

e2
12e

2
23e

2
31e

2
45e

2
56e

2
64,

C =
∑

60 perms

e2
12e

2
23e

2
31e

2
45e

2
56e

2
64e

2
14e

2
25e

2
36,

D =
∏

1≤i<j≤6

e2
ij , (2.14)

There is a ring homomorphism mapping Siegel modular forms to projective invariants. We

can write the projective invariants corresponding to generating modular forms as (by an

abuse of notation, we shall not distinguish the two)

ψ4 = B,

ψ6 =
1

2
(AB − 3C),

χ10 = D,

χ12 = AD. (2.15)
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An important property of the Siegel modular form is its factorization at the separating

degeneration of the genus two Riemann surface, where the off-diagonal component τ12 of

the period matrix goes to zero. We shall use the parameter ǫ defined in [4, 10], related by

2πiτ12 = −ǫ + O(ǫ3). In the ǫ → 0 limit,

ψ4 =
1

4
E4(τ1)E4(τ2)+O(ǫ2),

ψ6 =
1

16
E6(τ1)E6(τ2) + O(ǫ2),

χ10 = const · ǫ2∆(τ1)∆(τ2)+O(ǫ4),

χ12 = 96∆(τ1)∆(τ2) + O(ǫ2). (2.16)

3. Explicit results

3.1 The k = 1 extremal CFT

As a warm up exercise we shall revisit the genus one and genus two partition functions of

the k = 1 extremal CFT. The genus one partition function is

Z1(q) = J(q), (3.1)

where J(q) = j(q)− 744. Identifying the four point function with (3.1), we can expand the

part of 〈E(x/2)E(−x/2)E(y/2 + z)E(−y/2 + z)〉 that is singular in x, y in powers of z,

〈E(x/2)E(−x/2)E(y/2+z)E(−y/2+z)〉 = x−3y−3+
3

32
x−1y−1z−4+

3

64
(xy−1+x−1y)z−6 + · · ·

(3.2)

This expression can indeed be reproduced from (2.11) by explicitly evaluating the two

point function 〈Ψx(0)Ψy(z)〉.

The k = 1 genus two partition function is a linear combination of

ψ3
4

χ10
,

ψ2
6

χ10
,

χ12

χ10
. (3.3)

In the limit e12, e34, e56 → 0, the singular terms in the six-point function of E(ei) can be

determined using the EE OPE (2.11), together with the three point function of terms up

to order x2 in Ψx.

By matching with these, one can fix the unique choice of the modular form (up to

overall normalization),

Zk=1,g=2(Ω) =
A1

χ10

(

41

4608
ψ3

4 +
31

1152
ψ2

6 −
3813

2048
χ12

)

(3.4)

This is indeed the same expression as in [4] (note the different convention for the generating

forms: in [4] F12 is not a cusp form; it is a more general linear combination of χ12, ψ3
4 and

ψ2
6). In the limit ǫ → 0, one can check that (3.4) indeed factorizes as

Zk=1,g=2(Ω) →
const

ǫ2
J(τ1)J(τ2). (3.5)
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Note that ∆ = (E3
4 − E2

6)/1728, and J = (41E3
4 + 31E2

6)/(72∆).

We can extract information about the three-point functions of primaries from the genus

two partition function (3.4). For example, by expanding the six-point function

〈E(
x

2
)E

(

−
x

2

)

E

(

y

2
+ u

)

E

(

−
y

2
+ u

)

E

(

z

2
+ v

)

E

(

−
z

2
+ v

)

〉 (3.6)

corresponding to (3.4), up to order O(x−3yz) and O(xyz) respectively, and subtracting

the contribution from the Virasoro descendants in Ψx,1 one obtains
∑

i,j〈OiOj〉
2 and

∑

i,j,k〈OiOjOk〉
2, where Oi are the 196883 dimension 2 primaries. Normalizing the Oi’s

such that 〈Oi(z)Oj(0)〉 = δijz
−4, we find

1

196883

196883
∑

i,j,k=1

〈Oi(z1)Oj(z2)Ok(z3)〉
2 =

13858

3z4
12z

4
13z

4
23

(3.7)

3.2 The k = 2 extremal CFT

The k = 2 extremal CFT, if exists, has 1-loop partition function

Z2(q) = J(q)2 − 393767, (3.8)

By comparing with the six-point function of the twist operator E , in particular, the three-

point function 〈Ψx(0)Ψy(u)Ψz(v)〉 up to order O(x−2y−2z0), we can uniquely fix the genus

two partition function,

Zk=2,g=2(Ω) =
A2

χ2
10

(

574489

12230590464
ψ6

4 +
1125863

1528823808
ψ3

4ψ
2
6 +

159769

764411904
ψ4

6 (3.9)

−
17809159

905969664
ψ3

4χ12 −
6550529

226492416
ψ2

6χ12 +
91785533041

154618822656
χ2

12

−
393767

1572864
ψ2

4ψ6χ10 +
229938936071

9663676416
ψ4χ

2
10

)

This partition function has the correct singular behavior as e12, e34, e56 → 0. Furthermore,

as ǫ → 0, (3.9) indeed factorizes as

Zk=2,g=2(Ω) →
const

ǫ4
Z2(τ1)Z2(τ2). (3.10)

This is a highly nontrivial consistency check of (3.9), which was determined without im-

plementing (3.10).

Similarly to the k = 1 case, we can expand the six point function (3.6) corresponding

to (3.9), up to order O(x0y0z0), and extract information about the three-point function of

the primaries of dimension 3. There are 42987519 such primaries, denoted by Oi, whose

two-point functions are normalized as before. We find

1

42987519

42987519
∑

i,j,k=1

〈Oi(z1)Oj(z2)Ok(z3)〉
2 =

104725

4z6
12z

6
13z

6
23

(3.11)

1The three-point functions of various Virasoro descendants are rather messy, and are computed using a

Mathematica program. The program is available upon request.
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As a piece of numerology, the fact that (3.11) is almost an integer multiple of z−6
12 z−6

13 z−6
23

suggests that all the dimension 3 primaries Oi may be in one irreducible representation of

some symmetry group (possibly containing the monster group as a subgroup).

3.3 The k = 3 extremal CFT

The k = 3 extremal CFT has 1-loop partition function

Z3(q) = J(q)3 − 590651J(q) − 64481279. (3.12)

The genus two partition function is 1/χ3
10 times a weight 36 Siegel modular form. There are

17 independent Siegel modular forms of weight 36: ψ9
4 , ψ6

4ψ
2
6 , · · ·, χ3

10ψ6. It turns out that

by comparing with the six-point function of the twist operator E (3.6), up to the terms of

order O(x−3y−3z−1), which does not require the knowledge of correlation functions of the

dimension 4 primaries, we can determine all but 3 linear combinations of the 17 coefficients.

The remaining 3 coefficients can be fixed by demanding factorization in the limit ǫ → 0,

Zk=3,g=2 →
const

ǫ6
Z3(τ1)Z3(τ2). (3.13)

This is not obviously possible, since the factorization a priori over-determines the

remaining 3 coefficients. Remarkably, we do find a unique and consistent solution:

Zk=3,g=2(Ω) =
A3

χ3
10

[

307082041

1352605460594688
ψ9

4 +
1025849351

112717121716224
ψ6

4ψ
2
6 (3.14)

+
579427513

28179280429056
ψ3

4ψ
4
6 +

36867719

21134460321792
ψ6

6

−
9519543271

66795331387392
ψ6

4χ12 −
15531189821

8349416423424
ψ3

4ψ
2
6χ12

−
1511576479

4174708211712
ψ4

6χ12 +
328564579342237

17099604835172352
ψ3

4χ
2
12

+
85316215289123

4274901208793088
ψ2

6χ
2
12 −

11321414397534479

60798594969501696
χ3

12

−
150649445

38654705664
ψ5

4ψ6χ10 −
76160539

9663676416
ψ2

4ψ
3
6χ10

+
878731318367

1855425871872
ψ2

4ψ6χ10χ12 +
492299265760247

1068725302198272
ψ4

4χ
2
10

+
256516494599113

267181325549568
ψ4ψ

2
6χ

2
10 −

36705982837911919

1266637395197952
ψ4χ

2
10χ12

−
4272745361794189

118747255799808
ψ6χ

3
10

]

.

This can be regarded as a piece of evidence for the existence (and perhaps uniqueness)

of the k = 3 ECFT. It would be also straightforward to extract the sum of squares of the

three-point functions of dimension 4 primaries in the k = 3 ECFT, as in the k = 1, 2 cases;

although, we did not attempt this since the computation is rather time-consuming (even

with our Mathematica program!).
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4. Factorization and sewing

4.1 Next to leading order at the separating degeneration

It is also possible to compute the less singular terms in the expansion in ǫ near the separating

degeneration. In practice, the expansion is easier to set up by working with the six point

functions of twist fields. In the limit where three twist fields E are brought together

and replaced by a generic operator in the twisted sector, the six point function factorizes

into two four point functions, each corresponding to a torus partition function. A four

point function with a generic operator in the twisted sector O1
−n1/2O

2
−n2/2 · · · |E〉 roughly

corresponds to a torus one point function of O1
−n1

O2
−n2

· · · |0〉. For an extremal CFT the

second nonzero operator in the twisted sector after E is L−1 · E(z) = −∂E(z).

The factorization limit can be set up, for example, as the t → 0 limit of

〈E(te1)E(te2)E(te3)E(1/f1)E(1/f2)E(1/f3)〉. (4.1)

For convenience we will choose e1 + e2 + e3 = f1 + f2 + f3 = 0. The leading term in

the six-point function, of order O(t−3k), will be

t−3k〈E(e1)E(e2)E(e3)E
′(∞)〉〈E(0)E(1/f1)E(1/f2)E(1/f3)〉 = t−3k Zg=1(τ1)Zg=1(τ2)

(e12e23e13)k(f̃12f̃23f̃13)k

(4.2)

where E ′ stands for the operator E in the u = 1/z frame, τ1 = τ(e1, e2, e3,∞), τ2 =

τ(f1, f2, f3,∞), as in (2.3), and f̃ij ≡ f−1
i − f−1

j . The first subleading term in (4.1), of

order O(t1−3k), will be

t1−3k

3k
〈E(e1)E(e2)E(e3)(L−1 · E)′(∞)〉〈L−1 · E(0)E(1/f1)E(1/f2)E(1/f3)〉 (4.3)

=
t1−3k

3k

[

∂xZg=1(τ(ei, 1/x))|x=0

(e12e23e13)k

][

(f1f2f3)
3k ∂xZg=1(τ(fi, 1/x))|x=0

(f12f23f13)k

]

=
t1−3k

3k

1
2πi∂τZg=1(τ1)

1
2πi∂τZg=1(τ2)

(e12e23e13)k(f̃12f̃23f̃13)k
,

where the factor 1/3k comes from the normalization of L−1|E〉, and we have used the

identity

∂xτ(ei, 1/x)|x=0 =
28 · 27e1e2e3(e

2
1 + e2

2 + e2
3 − e1e2 − e2e3 − e3e1)

2

(e12e23e13)2 ∂τ j(τ1)

= −
E6(τ1)

E4(τ1)

j(τ1)

∂τ j(τ1)

=
1

2πi
. (4.4)

Note that 1
2πi∂τZ(τ) is the torus one-point function of the stress-energy tensor. In the

examples of k = 1, 2, 3, one can rewrite the genus two partition functions (3.4), (3.9), (3.14)

in the form of the six-point function (4.1) using (2.14), (2.15), and expand in t. The result

indeed matches (4.2), (4.3) precisely. Note that t is related to the parameter ǫ of [4, 10] by

t ∼ ǫ4.
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4.2 Genus two partition function from sewing tori

Generally, the genus two partition function of a holomorphic CFT of central charge c = 24k

with small ǫ (as defined in [4, 10]) can be expanded as

Zg=2(τ1, τ2, ǫ) =
∑

i

ǫ2∆i−2k〈Ai〉τ1〈Ai〉τ2 (4.5)

where Ai are an orthonormal basis of operators, with dimension ∆i, 〈· · ·〉τ stands for the

one-point function on a torus of modulus τ , with 〈1〉τ = Zg=1(τ). For an ECFT, all the

operators with ∆ ≤ k are Virasoro descendants of 1, and their torus one-point functions

can be derived using Ward identities. One can also constrain the torus one-point function

of a general primary field O of dimension ∆(> 0). It can be written as

〈O〉τ = TrO0q
L0−k, (4.6)

where O0 =
∮

dz
2πiO(z) is the zero mode of O. Furthermore, 〈O〉τ is a modular form of

weight ∆. The trace in (4.6) does not receive contribution from Virasoro descendants of

the vacuum, and hence the leading term in the q-expansion of (4.6) is of order q(k+1)−k = q.

Therefore 〈O〉τ is a cusp form of weight ∆, and can be non-vanishing only for ∆ ≥ 12. We

will not attempt to further constrain 〈O〉τ , which requires the knowledge of three-point

functions of the primaries.

If k ≥ 11, we can in principle determine the singular part as well as the O(1) part of

Zg=2(τ1, τ2, ǫ) in the ǫ → 0 limit. If k ≤ 10, we know that the torus one-point functions of

the primaries with ∆ ≤ 11 vanish, hence knowing the one-point function of the Virasoro

descendants of 1, up to dimension 11, we can in principle fix the terms in Zg=2(τ1, τ2, ǫ) up

to O(ǫ2(11−k)).

On the other hand, by modular invariance we expect Zg=2 to take the general form

Zg=2(Ω) =

⌊6k/5⌋
∑

m=0

χ−k+m
10 P12k−10m(ψ4, ψ6, χ12) (4.7)

where P12k−10m(ψ4, ψ6, χ12) is a polynomial in ψ4, ψ6, χ12 of homogeneous weight 12k−10m.

The leading terms in the expansion of ψ4, ψ6, χ10, χ12 in the small ǫ limit are given in (2.16).

If we know the terms of order O(ǫ−2k+2m) in (4.5), the polynomials P12k−10m are fixed

correspondingly.

For example, the leading singularity ǫ−2k comes from the term χ−k
10 P12k,

ǫ−2k(∆(τ1)∆(τ2))
−kP12k

(

1

4
E4(τ1)E4(τ2),

1

16
E6(τ1)E6(τ2), 96∆(τ1)∆(τ2)

)

(4.8)

Writing
E4(τi)

3

1728∆(τi)
= xi,

E6(τi)
2

1728∆(τi)
= xi − 1, i = 1, 2, (4.9)

(4.8) can be put in the form

ǫ−2kP̃ (x1x2, (x1 − 1)(x2 − 1)) (4.10)

– 10 –
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for some polynomial P̃ . On the other hand, the leading term in (4.5) is of the form

ǫ−2kH(x1)H(x2), (4.11)

for some polynomial H(x), since Zg=1(τi) is a polynomial in J(τi) = 1728xi − 744. There

is a unique way of rewriting (4.11) in the form (4.10), which determines P12k(ψ4, ψ6, χ12).

Similarly, comparison with the subleading terms in ǫ in (4.5) will in principle2 deter-

mine P12k−10, P12k−20, · · ·. For k ≥ 11, this will fix the P ’s up to P2k. The remaining

P2k−10, · · ·, P2k−10⌊k

5
⌋ are not determined in this approach. For k ≤ 10, since one can deter-

mine the terms in (4.5) up to O(ǫ2(11−k)), all the polynomials P12k−10m are fixed. Therefore

the genus two partition functions of the ECFTs with k ≤ 10 are in principle uniquely fixed.

To check the consistency of these partition functions (which is not a priori obvious), one

should consider the limit where a handle pinches, say by comparing with the six-point

function of twist fields as discussed in previous sections, or with two-point functions on the

torus (the self-sewing of [10]). The consistency checks and explicit computations are left

to future work.

Acknowledgments

We are grateful to D. Shih and A. Strominger for discussions, and especially to E. Witten for

correspondences and detailed comments on an earlier draft of the paper. DG is supported

in part by DOE grant DE-FG02-91ER40654. XY is supported by a Junior Fellowship from

the Harvard Society of Fellows.

References

[1] E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359.

[2] G. Hoehn, Selbstduale Vertexoperatorsuperalgebren und das Babymonster, arXiv:0706.0236.

[3] I. Frenkel, J. Lepowsky and A. Meurman, A natural representation of the Fischer-Griess

monster with the modular function J as character, Proc. Natl. Acad. Sci. U.S.A. 81 (1984)

3256; Vertex operator algebras and the Monster, Pure and Applied Mathematics 134, Boston,

U.S.A. (1988).

[4] M.P. Tuite, Genus two meromorphic conformal field theory, math.QA/9910136.

[5] A.B. Zamolodchikov, Conformal scalar field on the hyperelliptic curve and critical

Ashkin-Teller multipoint correlation functions, Nucl. Phys. B 285 (1987) 481.

[6] V.G. Knizhnik, Analytic fields on Riemann surfaces. 2, Commun. Math. Phys. 112 (1987)

567.

[7] L.J. Dixon, D. Friedan, E.J. Martinec and S.H. Shenker, The conformal field theory of

orbifolds, Nucl. Phys. B 282 (1987) 13.

[8] S. Hamidi and C. Vafa, Interactions on orbifolds, Nucl. Phys. B 279 (1987) 465.

2A complication lies in the expansion of the Siegel modular forms in ǫ, which may be obtained using the

formulae in [10].

– 11 –

http://arxiv.org/abs/0706.3359
http://arxiv.org/abs/0706.0236
http://arxiv.org/abs/math.QA/9910136
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB285%2C481
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C112%2C567
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C112%2C567
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB282%2C13
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB279%2C465


J
H
E
P
0
8
(
2
0
0
7
)
0
2
9

[9] J.-I. Igusa, On Siegel modular forms of genus two, Am. J. Math. 84 (1962) 175; Modular

forms and projective invariants, Am. J. Math. 89 (1967) 817.

[10] G. Mason and M.P. Tuite, On genus two Riemann surfaces formed from sewn tori,

math.QA/0603088.

– 12 –

http://arxiv.org/abs/math.QA/0603088

